您当前的位置:
首页 >
文章列表页 >
Indoor Parking Space Detection Based on Improved YOLOv5m
更新时间:2024-05-16
    • Indoor Parking Space Detection Based on Improved YOLOv5m

    • 研究团队针对室内停车场景下目标停车位检测难题,提出创新算法。该算法在YOLOv5m基础上增加小目标检测层,并引入坐标注意力机制,有效减少冗余信息,提升检测精度。同时,团队建立包含8100张图像的地下车位标注数据集进行实验。该算法平均检测精度达98.214%,准确率和召回率均超96%。这一成果显著提高了模型精度和实时性,为室内停车场景下的停车位检测提供了可行方案。
    • Software Guide   Vol. 23, Issue 4, Pages: 157-163(2024)
    • DOI:10.11907/rjdk.231405    

      CLC: TP391.41
    • Published:15 April 2024

      Received:20 April 2023

    扫 描 看 全 文

  • LI Yue,MA Shidian,HUANG Yuxuan.Indoor Parking Space Detection Based on Improved YOLOv5m[J].Software Guide,2024,23(04):157-163. DOI: 10.11907/rjdk.231405.

  •  
  •  

0

Views

1

下载量

0

CSCD

Alert me when the article has been cited
提交
Tools
Download
Export Citation
Share
Add to favorites
Add to my album

Related Articles

Application Progress on Convolutional Neural Network in Prostate Multiparameter MRI
Survey of Steel Surface Defect Detection Research
Orchard Obstacle Detection Algorithm Based on Ghost-CA-YOLOv4
Fastener Defect Detection Based on Improved Faster R-CNN Algorithm

Related Author

LI Jing
ZHANG Wenhui
HAN Fengxian
HU Tianchi
FAN Xiaohui
FANG Zhongqing
CHEN Xi
KONG Weibin

Related Institution

Political Work Department, Naval Military Medical University
Center for Translational Medicine, Naval Military Medical University
School of Health Science and Engineering, University of Shanghai for Science and Technology
Yancheng Optical Fiber Sensing and Application Engineering Technology Research Center
School of Information Technology, Yancheng Institute of Technology
0