您当前的位置:
首页 >
文章列表页 >
Real-time Diagnosis Method of Bearing Fault Based on Improved 1D-CNN
更新时间:2023-07-24
    • Real-time Diagnosis Method of Bearing Fault Based on Improved 1D-CNN

    • 在电机故障检测领域,研究者提出了一种基于改进1D-CNN的智能诊断模型,通过引入残差结构,显著提升了模型的诊断效率和准确率,为电机故障实时检测提供了高效解决方案。
    • Software Guide   Vol. 22, Issue 7, Pages: 32-37(2023)
    • DOI:10.11907/rjdk.231177    

      CLC: TH17
    • Published:30 July 2023

      Received:27 February 2023

    扫 描 看 全 文

  • JI Lipeng,HAO Jian,CAO Jianing,et al.Real-time Diagnosis Method of Bearing Fault Based on Improved 1D-CNN[J].Software Guide,2023,22(07):32-37. DOI: 10.11907/rjdk.231177.

  •  
  •  

0

Views

3

下载量

0

CSCD

Alert me when the article has been cited
提交
Tools
Download
Export Citation
Share
Add to favorites
Add to my album

Related Articles

Performance Analysis of Image Algorithm Based on Binary Feature

Related Author

Gao LIU
Xiao-qing ZUO

Related Institution

School of Land&Resources Engineering, Kunming Polytechnic University
Guangdong Institute of Intelligent Manufacturing, Guangdong Academy of Sciences
0